

VIII SYMPOZJUM PROBLEMY EKSPLOATACJI UKŁADÓW IZOLACYJNYCH WYSOKIEGO NAPIECIA

Zakopane, 18-20 października 2001

Piotr Fraczak¹

ZASTOSOWANIE PROGRAMU MATHCAD 2000 DO MODELOWANIA PROCESU STARZENIA DIELEKTRYKÓW ORGANICZNYCH

Streszczenie: Poddano procesowi starzenia dielektryki organiczne. Proces starzenia wymuszano powierzchniowymi wyładowaniami niezupełnymi (PWNZ) w obecności elektrolitu. Uzyskano zależność zmian względnych masy (m) od energii (W) PWNZ – elektrolit. W oparciu o uzyskaną zależność m=f(W) określono model matematyczny (m(W) = a ln (W+b)+c) procesu starzenia dielektryków organicznych. Parametry a, b i c wspomnianego równania wyznaczono przy pomocy procedury obliczeniowej Logarithmic Regression programu Mathcad 2000. Stwierdzono, że uzyskany model matematyczny dobrze odzwierciedla proces starzenia dielektryków przy minimalnej ilości parametrów.

Słowa kluczowe: dielektryki organiczne, starzenie, modelowanie.

1. Wstęp

Prawidłowa praca sieci energetycznych jest w głównej mierze uzależniona od izolatorów. Izolatory organiczne ulęgają procesowi starzenia. Proces starzenia izolatorów jest wywoływany głównie powierzchniowymi wyładowaniami niezupełnymi (PWNZ). PWNZ sprzyja przede wszystkim wilgoć, ozon, promieniowani UV i inne czynniki środowiskowe. Starzenie przejawia się erozja powierzchni, która ma wpływ na własności elektryczne izolatorów. Konsekwencja procesu starzenia (eroizji powierzchni) jest m. in. zmiana masy izolatora.

W pracy niniejszej podjęto próbę opisu matematycznego zmian masy materiałów kompozytowych starzonych PWNZ i oddziaływaniem elektrolitu.

Badania przedstawione w niniejszej pracy mają odpowiedzieć na pytanie, czy procedury obliczeniowe [2] programu Mathcad 2000 mogą być pomocne i przydatne w opisie trwałości skomplikowanych pod względem budowy i struktury kompozytowych materiałów organicznych.

2. Część doświadczalna

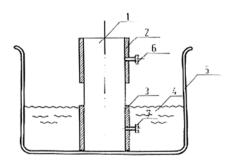
2.1. Przedmiot badań

Do badań użyto próbek w formie pręta (długość. 52, średnica ϕ = 20), skład chemiczny tych próbek podano w tabeli 1.

¹ Uniwersytet Szczeciński, ul. Wielkopolska 15, 70-451 Szczecin

L.p.	Skład kompozycji	A (a)	D (b)	E (c)
1	Żywica	EP 5	Ep 5	Ep5
	(cz. w.)	100	100	100
2	Utwardzacz	BTMG	BTMG	BEPOLIT
	(cz. w.)	106	106	85
3	Przyspieszacz	BTMG-U	BTMG-U	BTMG-U
	(cz. w.)	4,5	4,5	1
4	Wypełniacz (cz. w.)	SiO ₂ Dorosilit 16900 330	SiO ₂ 16900 Dorsilit 16900 Silinizowany 0.5% UAMI 3 330	SiO ₂ Dorosilit 16900 330

Tab. 1 Skład kompozycji żywic epoksydowych użytych do badań


(a) – materiał kompozytowy A; (b) – materiał kompozytowy B; (c) – materiał kompozytowy C

2.2. Metodyka badań

Powierzchniowe wyładowania niezupełne na badanych próbkach wymuszano napięciem (6 kV, f=50Hz) w specjalnym urządzeniu [1]. Przed przystąpieniem do wymuszania PWNZ na powierzchniach badanych próbek w obecności dokonywano pomiaru ich masy oraz stężenia elektrolitu. Po odpowiednim czasie starzenia próbek wyjmowano je z komór. Wyjęte próbki dielektryków osuszano bibułką a następnie ważono. Wyznaczone wartości zmian masy dla poszczególnych materiałów kompozytowych A, D i E przeliczano na względne zmiany masy μ [1]. Średni prąd określający intensywność wyładowań niezupełnych w obecności elektrolitu mierzono w układzie pomiarowym przedstawionym w pracy [1] zgodnie z Polską Normą PN-70/E-04066. Pomierzone wartości średnie prądów wyładowań próbek w czasie starzenia wykorzystano do obliczenia energii W PWNZ traconej na nich. Zależności μ (W) dla poszczególnych materiałów kompozytowych zamieszczono w tabeli 2.

2.3. Nawilżanie próbek

Szczególnie podatnym miejscem na występowanie PWNZ jest tak zwany punkt potrójny, w którym stykają się krawędzie elektrod z dielektrykiem stałym i gazowym [1]. W związku z powyższym opracowano nowy sposób nawilżania próbek (elektrolit - NaCl, konduktywność elektrolitu – 0,12÷0,13S/m). Sposób nawilżania próbek dielektryka oraz umiejscowienie elektrod pokazano na rysunku 1.

Rys. 1. Sposób oddziaływania elektrolitu na próbkę. 1- próbka, 2,3- elektrody (tuleje mosiężne, śr. wew $\phi=20$, śr. zew $\phi=24$, grubość 21), 4- elektrolit, 5- naczynko elektrolityczne, 6,7- śruby mocujące elektrody z próbką

Tab. 2 Zależność zmian względnych masy materiału A, D i E od energii W PWNZ i oddziaływania elektrolitu

Lp.	W [kJ]	Α μ0(W) [ppm] (a)	D μ0(W) [ppm] (b)	Е µ0(W) [ppm] (C)
1	2	50	60	30
2	4	55 90		70
3	6	90	110	100
4	8	105	150	155
5	10	110	170	160
6	15	120	220	210
7	20	150	260	250
8	25	170	300	260
9	30	179	320	300
10	35	180	340	330
11	40	181	385	350
12	45	190	420	380
13	50	195	419	390

⁽a) – przyrost względny masy kompozytu epoksydowego A (wartość średnia wyznaczona z trzech próbek), (b) – przyrost względny masy kompozytu epoksydowego D (wartość średnia wyznaczona z trzech próbek), (c) – przyrost względny masy kompozytu epoksydowego E (wartość średnia wyznaczona z trzech próbek)

3. Model procesu starzenia dielektryków organicznych

3,1. Równanie logarytmiczne.

Na podstawie przeprowadzonych badań (cz. 2) ustalono zależność między intensywnością PWNZ i oddziaływaniem elektrolitu (W), a zmianami względnymi masy jakim podlegają

dielektryki epoksydowe w czasie tych wyładowań (μ). Postać równania ujmującego wspomnianą zależność (μ=f(W)) zaproponowano na drodze rozpatrywania pewnych klas funkcji programu Mathcad 2000 takich jak, Logarithmic Regression, Power Regression, Exponential Regression i inne. W rezultacie tych poszukiwań stwierdzono, że funkcja Logarithmic Regression (1)

$$\mu(W) = a \ln(w+b) + c \tag{1}$$

reprezentatywnie odzwierciedla przebieg krzywej przy minimalnej ilości parametrów a, b i c. Równanie to wiąże zmiany względne masy μ próbek z energią W (PWNZ- elektrolit) traconą na nich podczas starzenia.

3.2. Wyznaczanie parametrów równania logarytmicznego za pomocą procedury obliczeniowej Logarithmic Regression programu Mathcad 2000

Wyznaczanie parametrów a, b i c równania (1) w oparciu o procedurę Logarythmic Regression sprowadza się do następujących zagadnień:

- wprowadzenie danych doświadczalnych (tab. 2) do tablicy stanowiącej dwa wektory (μ, W) ujmujące rozpatrywana zależność $\mu = f(W)$,
- określenie w sposób przybliżony wektora G (2) wartości liczbowych poszukiwanych parametrów.

$$G = [1 \ 0 \ 4]$$
 (2)

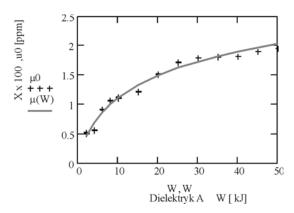
Po dokonaniu powyższych czynności program oblicza wektor T w oparciu o relacje (3)

$$T := \log fit(\mu, W, G) \tag{3}$$

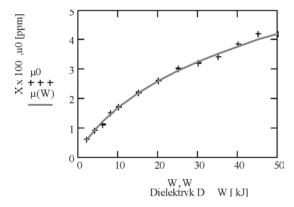
Wspomniany wektor T jest estymatorem parametrów równania (1) (T_0 – estymator parametru a, T_1 – estymator parametru b, T_2 – estymator parametru c). Wyznaczone estymatory parametrów dla poszczególnych dielektryków zamieszczono w tabeli 3.

Lp.	Materiał Izolacyjny	T ₀	T ₁	T ₂	corr
1	А	0.645	2.553	-0.522	0,988
2	D	2.413	11.817	-5.748	0,998
3	Е	1.692	4.925	-2.961	0,996

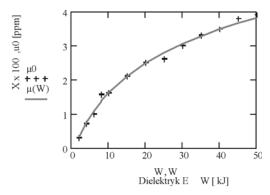
Tab. 3. Estymatory T_0 , T_1 , T_2 parametrów równania (1)


corr – współczynnik korelacji [2]

Jakość otrzymanego modelu (1) procesu starzenia dla poszczególnych dielektryków organicznych oceniano w oparciu o współczynnik korelacji (4). Współczynniki korelacji wyznaczono przy pomocy procedury obliczeniowej (3). Innymi słowy wspomniana procedura wyznacza jednocześnie wektor T i współczynnik korelacji (4).


$$corr(\mu(W), \mu 0)$$
 (4)

gdzie: $\mu(W)$ – wartość obliczona z równania, $\mu 0$ – wartość określona doświadczalnie.


Wartości liczbowe omawianych współczynnikow korelacji (tab.2) wyznaczono za pomocą procedury obliczeniowej programu Mathcad 2000.

Rys. 2. Zależność przyrostów względnych masy μ dielektryka syntetycznego A od energii PWNZ i oddziaływania elektrolitu. PWNZ inicjowano U=6 kV, f=50 Hz. +++- punkty określone doświadczalnie, – punkty wyznaczone z równania (1)

Rys. 3. Zależność przyrostów względnych masy μ dielektryka syntetycznego D od energii PWNZ i oddziaływania elektrolitu. PWNZ inicjowano U=6 kV, f=50 Hz. +++- punkty określone doświadczalnie, - punkty wyznaczone z równania (1)

Rys. 4. Zależność przyrostów względnych masy μ dielektryka syntetycznego od energii PWNZ i oddziaływania elektrolitu. PWNZ inicjowano U=6 kV, f=50 Hz. +++- punkty określone doświadczalnie, – punkty wyznaczone z równania (1)

167

3.3. Graficzna prezentacja modelu matematycznego procesu starzenia dielektryków organicznych

Przebiegi graficzne rozpatrywanego procesu starzenia (cz. 2) wyznaczono w oparciu o trójparametrowe równanie postaci logarytmicznej (1). Współczynniki tego równania określono w oparciu o procedurę obliczeniowa Logarithmic Regression programu Mathcad 2000. Uzyskane modele matematyczne procesu starzenia dla poszzczegolnych materiałów wraz z danymi doświadczalnymi zamieszczono na rysunkach 1, 2 i 3.

4. Podsumowanie

Opracowano trójparametrowe równanie postaci logarytmicznej (1) ujmujące zmiany względne masy dielektryków organicznych w zależności od energii (W) powierzchniowych wyładowań niezupełnych i oddzialowania elektrolitu. Parametry T_0 , T_1 , T_2 równania (1) wyznaczono w oparciu o dane doświadczalne (tab. 2) przy pomocy procedury obliczeniowej Logarythmic Regression programu Mathcad 2000. Uzyskano wysoką korelację (corr = 0.988 ÷ 0.998) pasowanego równania (1) do danych doświadczalnych (tab. 2). Otrzymano dużą zgodność wyników starzenia izolatorów uzyskanych doświadczalnie z wartościami odtworzonymi za pomocą równania (1) (rys. 1, rys. 2, i rys. 3). Wskazuje to na możliwość matematycznego modelowania procesu starzenia dielektryków organicznych.

W związku z powyższym wydaje się prawdopodobne, iż dalsze badania w tym zakresie mogą doprowadzić do stworzenia podstaw oceny porównawczej materiałów izolacyjnych. Natomiast zautomatyzowane układy pomiarowe w połączeniu ze skomputeryzowanymi środkami oceny mogą znacznie uprościć ocenę tworzyw uzyskiwanych wg dowolnej technologii. Przyspieszy to znacznie dalsze celowe kierunki poszukiwań materiałów i zapewni podwyższoną jakość dobieranych materiałów izolacyjnych.

Literatura

- [1] **Frączak P.**: Metoda określania odporności tworzyw organicznych na erozję wywołaną działaniem powierzchniowych wyładowań niezupelnych. Praca doktorska, Politechnika Szczecińska, Szczecin 1992.
- [2] Mathcad 2000: http://www.prenhall.com/books/esm 0130200077.html
- [3] Wiśniewski M., Żero A.: Mathcad 7.0, Exit, Warszawa 1998.
- [4] PN-70/E-04066 Wyładowania niezupełne izolacji przy napięciu przemiennym. Metody badań.

CIRCUMSCRIPTION OF AGEING PROCESS OF ORGANIC DIELECTRIC MATERIALS AIDED WITH MATHCAD 2000 SOFTWARE

Summary: The ageing process of organic dielectric materials was caused by surface partial discharges (SPD) with presence of electrolyte. The relation between the change of mass (μ) and energy (W) in SPD - electrolyte - has been obtained. Basing on relation μ = f(W) the mathematical model of ageing process of organic dielectric materials has been created. Parameters: a, b, c were calculated by Logarithmic Regression procedure of Mathcad 2000 software. The conclusion is that mathematical model which was obtained is a proper reflection of ageing process of organic dielectric materials.