

Zakopane, 18-20 października 2001

Paweł Zydroń¹

BADANIE KALIBRATORÓW ŁADUNKU POZORNEGO WYŁADOWAŃ NIEZUPEŁNYCH

Streszczenie: W referacie omówiono zagadnienia związane z aktualnymi wymaganiami stawianymi kalibratorom ładunku pozornego, stosowanym do skalowania układów pomiarowych wyładowań niezupełnych. Przedstawiono porównanie obecnie obowiązujących norm – krajowej PN-04066/86 oraz międzynarodowej IEC60270-2000 – w tym zakresie. Opisano jedną z proponowanych metod wyznaczania ładunków pozornych wytwarzanych przez kalibratory oraz zaprezentowano jej praktyczną realizację.

Słowa kluczowe: wyładowania niezupełne (wnz), skalowanie, pomiary szerokopasmowe, uśrednianie sygnałów

1. Wprowadzenie

Pomiary wyładowań niezupełnych stanowia jeden z elementów diagnostyki układów izolacyjnych wysokiego napięcia, stosowany zarówno w badaniach poprodukcyjnych, jak i eksploata cyjnych. W drugiej grupie tradycyjnie wyróżnia się pomiary wykonywane na obiektach podczas ich normalnej pracy – on-line oraz na obiektach wyłączonych z ruchu – off-line. W każdym z wymienionych przypadków istotne znaczenie ma poprawne i zgodne z normami wykonanie badań, w tym stosowanie właściwie wyskalowanych przyrządów pomiarowych. Podstawową wielkością wyznaczaną podczas większości pomiarów wyładowań niezupełnych jest tzw. ladunek pozorny to znaczy ładunek, który doprowadzony w sposób impulsowy na zaciski badanego obiektu zmienia panujące na nich napięcie o tę samą wartość, co samo wyładowanie. Wartości ładunków pozornych impulsów wyładowań są wyznaczane przede wszystkim na obiektach o stałych skupionych oraz – rzadziej – na obiektach o stałych rozłożonych. W drugim przypadku podstawowym utrudnieniem towarzyszącym pomiarom są występujące zjawiska falowe, a mierzoną wielkością jest wówczas często amplituda napięcia impulsu. Należy zauważyć, że mierniki wyładowań nie są skalowane w wartościach bezwzględnych ładunku, a każdy pomiar jest pomiarem porównawczym. Operacją, która umożliwia określenie wskazań miernika wyładowań względem znanych wartości ładunków

¹ AGH, Zakład Elektroenergetyki, al. Mickiewicza 30, 30-059 Kraków

odniesienia jest *skalowanie*. Polega ono na podaniu ładunków o znanej wartości i mających postać krótkotrwałych impulsów prądowych, z układu skalującego zwanego kalibratorem (*KAL*) dołączanego równolegle do badanego obiektu – co dla podstawowych układów detekcji przedstawiono na rysunku 1.

Rys. 1. Sposób dołączenia kalibratora KAL w dwóch podstawowych układach detekcji wyładowań niezupełnych: a) szeregowym, b) równoległym ($AC - \acute{z}$ ródło napięcia probierczego, C_t – pojemność obiektu badanego, C_k – kondensator sprzęgający, Z_m – impedancja detekcyjna, Z – impedancja filtru w.cz.)

Istotne znaczenie dla poprawnego przeprowadzenia skalowania ma zastosowanie impulsu prądowego o odpowiednio szerokim paśmie częstotliwości. Przy pomiarach klasycznych – zgodnych z normami IEC-60270 [1] oraz PN/E-04066 [2], impuls podlega całkowaniu przez pasmowoprzepustowy układ detekcyjny o częstotliwościach granicznych: dolnej f_1 i górnej f_2 . Częstotliwość graniczna widma impulsów skalujących powinna być wówczas wielokrotnie wyższa od częstotliwości f_2 i porównywalna z częstotliwością graniczną mierzonych wyładowań (rys. 2).

Rys. 2. Wzajemna zależność widm: wyładowań niezupełnych (wnz) i impulsów skalujących (skal) oraz pasma detekcyjnego dla poprawnego skalowania układu pomiarowego (na podstawie [1])

Najczęściej układy skalujące wykonywane są jako zasilane bateryjnie przenośne przyrządy (rys. 3), których głównymi elementami są:

- generator impulsów prostokątnych o stromych zboczach i amplitudzie U_s;

– kondensator C_s o niewielkiej pojemności lub zestaw takich kondensatorów, wytwarzające ciąg impulsów prądowych o ładunku q_s określonym wzorem:

$$q_s = U_s \cdot C_s \tag{1}$$

Większość kalibratorów jest wykonywana jako przyrządy niskonapięciowe co powoduje, że skalowanie w układzie pomiarowym odbywa się bez wysokiego napięciu, a po jego przeprowadzeniu są one odłączane. Z tego powodu dla zachowania odpowiedniej dokładno-474 ści skalowania wymagane jest, aby pojemność C_s była co najmniej 10-krotnie mniejsza od pojemności badanego obiektu C_t . W przypadku zastosowania układu skalującego z kondensatorem wysokonapięciowym, który pozostaje na czas właściwego pomiaru, warunek ten nie jest wymagany.

2. Wymagania norm stawiane kalibratorom ładunku pozornego

Rys. 3. Schemat blokowy typowego generatora ładunków skalujących: GEN – generator napięciowych impulsów prostokątnych, C_s – kondensator, AKU – akumulator, WSK – wskaźnik napięcia, LAD – ładowarka

Ze względu na wymienione wyżej wymagania częstotliwościowe, wynikające z nich parametry czasowe impulsów skalujących wytwarzanych przez kalibratory ładunku pozornego powinny być porównywalne z parametrami impulsów wyładowań występujących w obiektach badanych. W praktyce widmo impulsu skalującego zależy od czasu narastania t_r (lub opadania t_d) zbocza fali prostokątnej generatora *GEN* (rys.2). Czas ten – określany dla przedziału pomiędzy 10% a 90% wartości amplitudy fali – powinien być jak najkrótszy, dla zapobieżenia powstawaniu błędu całkowania ładunku w układzie detekcji. Dla tak określonego czasu narastania (opadania) zbocza można wyznaczyć 3-decybelową częstotliwość graniczną, która w przybliżeniu wynosi:

$$f_{-3dB} = \frac{0.35}{t_r(t_d)}$$
(2)

Zarówno nowa norma międzynarodowa [1] jak i obowiązująca jeszcze norma krajowa [2] określają parametry czasowe jakie powinny spełniać impulsy generowane przez kalibratory ładunku pozornego, a wymagania te przedstawiono w tabeli 1. W zależności od kształtu przebiegu z generatora *GEN* na wyjściu układu skalującego mogą być wytwarzane impulsy ładunkowe mające jedną lub dwie polarności. W dotychczas stosowanych układach są to najczęściej dwa impulsy na okres napięcia probierczego tzn. 100/120 impulsów na sekundę.

Wartość ładunku impulsu prądowego generowanego przez układ skalujący może być sprawdzona dwiema podstawowymi metodami [1, 3]:

- przez pomiar bezpośredni przy użyciu układu całkującego,
- przez rejestrację kształtu impulsu prądowego na rezystorze o małej wartości i obliczenie pola jego powierzchni.

Ponadto, zgodnie z zaleceniami normy IEC60270 dla sprawdzenia cyfrowych systemów rejestracji wyładowań niezupełnych wymagane jest wytwarzanie przez układy skalujące sekwencji impulsów mających zarówno ściśle określone parametry czasowe jak i liczbę. Stwarza to konieczność stosowania rozbudowanych, cyfrowo sterowanych układów skalujących. W każdym z przypadków podczas badań należy uwzględnić wpływ zmiany wartości parametrów generatora na wielkość szacowanej niepewności pomiarowej [4]. Należy zaznaczyć, że zgodna z normami, pełna procedura skalowania obejmuje: 1) skalowanie układów pomiarowych wyładowań niezupełnych; 2) określenie parametrów stosowanego miernika wyładowań na każdym z jego zakresów, w tym m.in.: czasu rozdzielczego, dolnej f_1 i górnej f_2 częstotliwości granicznej, liniowości, stabilności i dokładności.

Norma krajowa PN/E-04066/86 (IEC60270-1981)						
Parametr	Wartość		Komentarz			
czas narastania t _r	$t_r < \frac{1}{t_2}$	ale nie więcej niż 100ns	f ₂ – górna częstotliwość graniczna układu detekcji wyładowań			
	$t_r \leq \frac{0.03}{t_2}$	dla <i>f</i> ₂ < 500 kHz	zał. krajowy ZK-4			
	$t_r \leq 50 ns$	dla <i>f</i> ₂ > 500 kHz				
Norma międzynarodowa IEC60270-2000						
Parametr	Wartość		Komentarz			
czas narastania t _r	$t_r \leq 60ns$	dla <i>f</i> ₂ > 500 kHz	f ₂ – j.w.			
	$t_r \leq \frac{0.03}{f_2}$	dla <i>f</i> ₂ < 500 kHz				
kształt impulsu napięciowego	\underline{L} poziom H nie może się zmienić wiecej niż o 5%		na wyjściu kalibratora im- pulsy dwóch biegunowości			
	tr td	$t_{d} > (1/t_{1})$	na wyjściu kalibratora im- pulsy jednej biegunowości			

Tabela	1. Normatywne	wartości parametrów	czasowych.	kalibratorów wnz
--------	---------------	---------------------	------------	------------------

3. Układ do pomiaru ładunków wytwarzanych przez kalibratory

Metoda pomiarowa służąca wyznaczeniu wartości ładunków wytwarzanych przez kalibratory wnz zalecana przez normę IEC [1] (załącznik A) polega na szerokopasmowej rejestracji impulsu produkowanego przez kalibrator na rezystorze o małej rezystancji. Ładunek q, odpowiadający scałkowanej w czasie wartości prądu jest określony wzorem:

$$q = \int_{t_1}^{t_2} i(t)dt = \frac{1}{R} \int_{t_1}^{t_2} u_R(t)dt$$
(3)

gdzie: R – wartość rezystancji rezystora, i(t) – prąd z kalibratora, $u_R(t)$ – napięcie na rezystorze, t_1 , t_2 – umowne chwile początku i końca całkowania rejestrowanego sygnału.

Na rysunku 4 przedstawiono działający na tej zasadzie układ pomiarowy, stosowany do badania kalibratorów wyładowań niezupełnych w Laboratorium Wysokich Napięć Zakładu Elektroenergetyki AGH w Krakowie.

Zastosowany oscyloskop cyfrowy (*Tektronix TDS 784D*) pozwala na szerokopasmową rejestrację sygnałów (20MHz–200MHz–1GHz) z dużymi częstotliwościami próbkowania – do 4 Gpróbek/s. Podczas sprawdzania kalibratorów wykorzystywany jest wewnętrzny rezy-476

Rys. 4. Schemat blokowy stanowiska do wyznaczania ładunków generowanych przez kalibratory do skalowania układów pomiarowych wyładowań niezupełnych

stor $R_{\rm w}$ = 50 Ω lub rezystor zewnętrzny R_z dołączany równolegle do wewnętrznego $R_{\rm w} = 1$ M Ω . Norma IEC [1] określa, że przy stosowaniu tej metody rezystor powinien mieć wartość od 50 Ω do 200 Ω , a minimalna szerokość pasma układu rejestracji winna wynosić 50 MHz. W przedstawianym układzie stosowane jest pasmo 200 MHz i częstotliwość próbkowania 2GHz. Ponadto norma ta zaleca, aby wynik pomiaru był uśrednieniem minimum 10 pojedynczych rejestracji. Wykorzystując możliwości zastosowanego oscyloskopu pomiary są wykonywane w trybie akumulacji przy zadanej liczbie sumowań M wynoszącej od 400 do 1000 przebiegów (całkowity czas rejestracji dla typowych kalibratorów od 4 do 20 sekund). Pozwala to na poprawę warunków pomiaru przez zwiększenie wartości współczynnika sygnał/szum SNR dla zakłóceń niesynchronicznych względem rejestrowanych impulsów o wartość równą pierwiastkowi z M. Oscyloskop jest sterowany z komputera nadzorczego przez interfejs IEEE-488 przy użyciu programu WaveStar[®] (Tektronix), a wyniki są zapamiętywane w postaci plików tekstowych. Uwzględniając wymienione wyżej parametry układu pomiarowego oraz rejestrowane sekwencje próbek sygnału, wartości ładunków q generowanych przez badane kalibratory są wyznaczane przy użyciu arkusza kalkulacyjnego Excel [®] (*Microsoft*) zgodnie ze wzorem:

$$q[pC] = \frac{1}{R \cdot f_s} \cdot \sum_{i=1}^N u_i = 10 \cdot \sum_{i=1}^N u_i$$
(4)

gdzie: R – rezystancja [Ω], f_s – częstotliwość próbkowania [Hz], u_i – wartość próbki napięcia [V], N – liczba analizowanych próbek.

Na rysunku 5 przedstawiono zarejestrowane opisaną metodą i przeliczone impulsy prądowe uzyskane podczas sprawdzania dwóch kalibratorów stosowanych do skalowania

Rys. 5. *Przykładowe impulsy prądu płynącego przez rezystor* $R = 50 \Omega$ *wytwarzane przez kalibratory ladunku do skalowania układów pomiarowych wyładowań niezupelnych*

układów pomiarowych, wykorzystujących klasyczne układy detekcji wyładowań niezupełnych.

4. Podsumowanie

W referacie przedstawiono aktualne wymagania norm [1, 2] dotyczące kalibratorów stosowanych podczas skalowania układów pomiarowych wyładowań niezupełnych. Zaprezentowano również praktyczną realizację stanowiska do pomiaru generowanych przez nie ładunków, z wykorzystaniem metody cyfrowego uśredniania impulsów prądu. Należy zaznaczyć, że szczególne wymagania odnośnie do parametrów impulsów skalujących – nie opisywane w omawianych normach – występują w przypadku pomiarów w zakresach *UHF/VHF*, a więc np. podczas badania gazowych układów izolacyjnych. Ze względu na bardzo krótkie czasy narastania i trwania impulsów wyładowań w tych układach, dla potrzeb skalowania używane są generatory o specjalnej konstrukcji, pozwalające na uzyskanie impulsów o czasach narastania nawet ok. 70 ps [5].

Literatura

- [1] IEC Publication 60270-2000 Partial discharge measurements, IEC, 2000
- [2] Polska Norma PN-86/E-04066 Pomiary wyładowań niezupełnych
- [3] Lukas W. Schon K., Lemke E., Elze H. *Comparison of two techniques for PD calibrators*, Conf. Proc. 10th ISH, CD file 3106, Montreal, Canada, 1997
- [4] Gobbo R., Pesavento G., Sardi A., Varetto G., Cherbaucich C., Rizzi G. Influence quantities of PD calibrators contribution to the uncertainty estimate, Conf. Proc. 11th ISH, paper 5.272.P5, London, England, 1999
- [5] Neuhold S.M., Benedickter H.R., Schmatz M.L. A 300V mercury switch pulse generator with 70 psec rise time for investigation of UHF PD signal transmission in GIS, Conf. Proc. 11th ISH, paper 5.78, London, England, 1999

TESTING OF PARTIAL DISCHARGE APPARENT CHARGE CALIBRATORS

Paper presents current state of standardisation of partial discharge calibrators accordingly to international standard IEC60270-2000 [1] and domestic standard PN/E-04066-86 [2]. Measuring digital system for evaluation of apparent charge generated by these calibrators meeting IEC standard requirements is described.

Prace opisane w niniejszym referacie zrealizowano w ramach umowy 10.10.120.138/p finansowanej przez Komitet Badań Naukowych.