

Wielotorowe, wielonapięciowe elektroenergetyczne linie napowietrzne - nowy element w Krajowym Systemie Elektroenergetycznym

dr hab. inż. Henryk Kocot, prof. PŚ

dr inż. Agnieszka Dziendziel

Znaczne zmiany w strukturach systemu wytwórczego

 \bigcirc

X

Moc zainstalowana netto w GW_e w podziale na technologie wytwarzania na przestrzeni lat 2020-2030

Rosnące zapotrzebowanie na moc i energię elektryczną

Średnie roczne krajowe zapotrzebowanie na moc oraz zapotrzebowanie maksymalne w dobowych szczytach obciążenia dni roboczych w latach 1980 ÷ 2021

Konieczność zapewnienia bezpieczeństwa dostaw energii elektrycznej

Obecne działania prowadzące do zwiększenia zdolności przesyłowej sieci elektroenergetycznej

Obecne działania prowadzące do zwiększenia zdolności przesyłowej sieci elektroenergetycznej

Dynamiczna obciążalność linii 220 kV z przewodami roboczymi AFL-8 525 mm²

Obecne działania prowadzące do zwiększenia zdolności przesyłowej sieci elektroenergetycznej

Rozbudowa sieci przesyłowej

Przyszłość Krajowego Systemu Elektroenergetycznego?

Zestawienie efektów zadań inwestycyjnych na lata 2023-2032, po roku 2032 oraz w latach 2023-2036

Rodzaj efektu	2023-2032	Po roku 2032	2023-2036
Przyrost długości torów linii HVDC [km] z czego:	775	0	775
połączenie kablowe HVDC Polska-Litwa	175	0	175
notaczenie napowietrzne HVDC północ-południe	600	0	600
Konwertery	3	0	3
Przyrost długos. V [km] z czego:	4 339	886	5 225
nowellinie	4.875	886	5 761
linie wyłączane z eksploate	536	0	536
Przyrost długości torów linii 220 kV [km] z czego:	-259	0	-259
nowellinie	233	0	233
linie wyłączane z eksploatacji	492	0	492
Długość torów modernizowanych linii 400 kV [km]	1 820	0	1 820
Długość torów modernizowanych linii 220 kV [km]	1 334	150	1 484
Przyrost zdolności transformacji 400/220 kV [MVA] z czego:	4 500	1 000	5 500
nowe transformatory	4 500	1 000	5 500
transformatory wyłączane z eksploatacji	0	0	0
Przyrost zdolności transformacji 400/110 kV [MVA] z czego:	20 220	1 770	21 990
nowe transformatory	23 220	1 770	24 990
transformatory wyłączane z eksploatacji	3 000	0	3 000
Przyrost zdolności transformacji 220/110 kV [MVA] z czego:	3 758	-205	3 580
nowe transformatory	11 155	275	11 430
transformatory wyłączane z eksploatacji	7 370	480	7 850
Przyrost zdolności transformacji 110/SN kV [MVA]:	80	0	80
Przyrost zdolności kompensacji mocy biernej [MVar] z czego:	2 100	0	2 100
nowe dławiki [MVar]	1 050	0	1 050
nowe kompensatory synchroniczne [MVar]	1 050	0	1 050

Katedra Elektroenergetyki i Sterowania Układów

9

Rozbudowa sieci przesyłowej – warianty

Klasyczne linie prądu przemiennego HVAC

Linie prądu stałego HVDC

Klasyczne linie prądu przemiennego jako podstawa współczesnych systemów elektroenergetycznych

Charakterystyka

- Linie jednotorowe lub dwutorowe jednonapięciowe
- Każdy tor prądowy tworzą trzy przewody fazowe stanowiące wspólny układ trójfazowy
- Rozpływ mocy w sieci HVAC kształtowany przez moce wytwarzane w poszczególnych węzłach
- Praca synchroniczna
- f = 50 Hz lub 60 Hz
- Występowanie: powszechne

Zalety

- **Bogate doświadczenia eksploatacyjne**
- Synchroniczna praca całego systemu
- Szeroko rozpoznane modele elementów

Wyzwania

- Ograniczona możliwość sterowania przepływami mocy
- Ograniczona długość odcinków linii
- Rosnący opór społeczny przed budową nowych odcinków

Charakterystyka

- Linie wielotorowe, w których co najmniej dwa tory prądowe Ο prowadzone na wspólnej konstrukcji wsporczej mają różne napięcia znamionowe
- f = 50 Hz lub 60 Hz0
- Występowanie: Austria, Czechy, Holandia, Niemcy, Polska, USA Ο

Zalety

- ✓ Ułatwienie prowadzenia ciągów liniowych na terenach trudnych do zagospodarowania (tereny silnie zurbanizowane z dużą gęstością zabudowy, leśne, górzyste)
- ✓ Usprawnienie rozbudowy sieci elektroenergetycznej
- Zmniejszenie oddziaływania elementów sieci przesyłowej na \checkmark środowisko i krajobraz

Wyzwania

- Zagrożenie wystąpienia zakłóceń międzysystemowych
- Utrudniona eksploatacja, w tym realizacja prac pod napięciem ×
- Niesymetria geometryczna rzutująca na pracę linii napowietrznej i jej otoczenia sieciowego

Linie prądu stałego HVDC

Charakterystyka

- Niezależność biegunów \bigcirc
- Wymagane co najmniej dwa przekształtniki \mathbf{O} energoelektroniczne
- Obecnie występuje najczęściej w konfiguracji Ο punkt – punkt, łącząc dwa węzły w SEE
- W zależności od zastosowanej technologii 0 energoelektronicznej: LCC oraz VSC
- f = 0 Hz 0
- Występowanie: Argentyna, Brazylia, Chiny, Dania, Indie, Szwecja, USA

Zalety

- Brak ograniczeń odległości przesyłu ze względu na brak zjawisk falowych \checkmark i strat mocy biernej, nie wymaga pracy synchronicznej
- Nie występują problemy związane ze stabilnością napięciową \checkmark
- Latwość regulacji kierunku przepływu mocy $\frac{P_{\text{HVDC}}}{P_{\text{HVAC}}} = \frac{2I_{\text{HVDC}}U_{\text{HVDC}}}{3I_{\text{HVAC}}} \approx 1,15 \frac{U_{\text{HVDC}}}{U_{\text{HVAC}}}$ Zwiększone zdolności przesyłowe:
- \checkmark

Wyzwania

- Zróżnicowane rodzaje technologii, warianty przesyłu, typy sprzętu; zarządzanie stanowi wyzwanie z uwagi na brak doświadczeń krajowych
- Technologia uznawana za kosztowną w porównaniu z systemami HVAC X (opłacalna powyżej 500 km)
- Brak przepisów krajowych m.in. dotyczących dopuszczalnych PEM

Linie hybrydowe HVAC/HVDC

Charakterystyka

- Na wspólnej konstrukcji wsporczej: tor HVAC oraz HVDC Ο
- Łączą zalety i wady linii HVAC i HVDC we wspólnej infrastrukturze wieżowej, Ο przy niezauważalnej zmianie efektu wizualnego
- f = 50/60 Hz oraz 0 Hz 0
- Występowanie: Chiny, Szwajcaria Ο

Zalety

- ✓ Tor HVDC zapewnia lepszą kontrolę przepływu mocy oraz poprawę warunków napięciowych, a system HVAC zapewnia prostą transformację poziomów napięcia dostosowanych do potrzeb odbiorców
- Z punktu widzenia operatorów systemów przesyłowych bardzo korzystne rozwiązanie pod względem zapewnienia elastyczności sterowania oraz zwiększenia zdolności przesyłowych zrealizowane poprzez budowę (lub konwersję) pojedynczej linii hybrydowej

Wyzwania

- Solution Wzajemny wpływ torów HVAC i HVDC skutkujący m.in. skomplikowaniem modeli matematycznych oraz komplikacją EAZ, indukowaniem się napięć przemiennych w sieci HVDC na skutek bliskiej pracy toru HVAC
- Wzmożenie efektów koronowych dla każdego z torów × i HVDC, w efekcie zwiększenie hałasu
- "Hybrydowy" charakter pola elektromagnetycznego wokół linii potęgujący obawy społeczne

HVAC

Źródło grafiki: https://glosbe.com/fb_img/1440x1440/9M332831_Langes_Feld_10c5.JPG

Rozbudowa sieci przesyłowej – warianty

Sieć HVAC jest podstawą obecnych SEE i należy ją rozwijać...

...przyszłościowo należy poznawać nowe rozwiązania

Sprzeciw społeczny dla budowy linii napowietrznych WN i NN

Intensyfikacja wykorzystania terenu przeznaczonego pod budowę linii napowietrznych

Intensyfikacja wykorzystania terenu przeznaczonego pod budowę linii napowietrznych

Znaczne zróżnicowanie układów prowadzenia torów prądowych na wspólnej konstrukcji wsporczej

19

ke

WWLN w Polsce

Numer rysunku	Lokalizacja	Relacja	Długość odc wielonapięc
Α	PSE Południe	Świebodzice-Wrocław (400 + 110 kV)	14 km
В	PSE Południe	Łagisza – Rokitnica (400 kV) Łagisza – Tucznawa (400 kV) Łagisza – Joachimów (220 kV)	4,8 km
С	PSE Południe	Dobrzeń – Wrocław (400 kV) Żórawina – Wrocław (110 kV) Bielany – Wrocław (110 kV)	6,5 km
D	PSE Północ	Żarnowiec-Gdańsk Przyjaźń (400 kV) Gdańsk Przyjaźń-Gdańsk Błonia (400 kV) Gdańsk Przyjaźń- Gdańsk 1 (220 kV)	5,3 km
E	PSE Zachód	Leśniów – Zielona Góra (220 kV) Leśniów-Łużycka i Krośnieńska-Energetyków (110 kV)	\approx 10 km
F	PSE Zachód	Plewiska-Kromolice (400, 110 kV) Plewiska-Konin (400 kV) Plewiska-Poznań Płd. (220 kV)	31,2 km
G	PSE Wschód	Klikowa-Niziny (220 kV – nieczynny) 110 kV: m.in. Połaniec II-Grzybów, Połaniec II- Cegielnia Oleśnica, Szczucin-Cegielnia Oleśnica, Oleśnicka-Szczucin, Niedomice-Oleśnicka	≈ 45 km
н	PSE Zachód	Krajnik-Glinki (220 kV) Redlica-Glinki (110 kV – w gabarytach 220 kV)	9 km
I	PSE Centrum	Mory-Towarowa (220 kV, 110 kV – w gabarytach 220 kV)	7,5 km
J	PSE Północ	Żydowo - Żydowo-Kierzkowo (2×400 kV, 2×110 kV)	≈ 2,5 km
PLANOWANA	PSE Południe	Byczyna-Podborze (2×400 + 220 kV)	60-75 km

Intensyfikacja wykorzystania terenu przeznaczonego pod budowę linii napowietrznych

$\Sigma P / \Sigma d = 2850 / 150 = 19,0 \text{ MW/m} \rightarrow 100\%$

 $P/d = 2850/70 = 40,7 \text{ MW/m} \rightarrow 214\%$

			j
			1
			}
			!
. <u> </u>		_	
ļ			
!			
!			
-			
-			
///	777	///	7.

WWLN krokiem ku rozbudowie sieci przesyłowej a obawy społeczne

Obowiązujące przepisy i normy

Zagadnienia związane z oddziaływaniem na środowisko pól elektromagnetycznych wytwarzanych przez linie wysokiego napięcia regulują przepisy:

- 1883);
- przemiennego powyżej 45 kV. Część 1: Wymagania ogólne. Specyfikacje wspólne.

Zgodnie z obowiązującymi przepisami dopuszczalne poziomy pola elektrycznego i magnetycznego o częstotliwości 50 Hz dla miejsc dostępnych dla ludzi wynoszą:

- Składowa elektryczna:
 - w miejscach dostępnych dla ludzi: 10 kV/m;
 - dla terenów pod zabudowę mieszkalną: 1 kV/m;
- Składowa magnetyczna: 60 A/m.

Wartość natężenia pola elektromagnetycznego określa się nad powierzchnią ziemi lub innymi powierzchniami, na których mogą przebywać ludzie - na wysokości **2_m**.

• w zakresie ochrony przed oddziaływaniem pola elektromagnetycznego: rozporządzenie Ministra Zdrowia z dnia 17 grudnia 2019 r. w sprawie dopuszczalnych poziomów pola elektromagnetycznego w środowisku oraz sposobów sprawdzania dotrzymania tych poziomów (Dz. U. 2019, poz.

• w zakresie projektowania i budowy linii elektroenergetycznych: norma PN-EN 50341-1:2005 Elektroenergetyczne linie napowietrzne prądu

Analizowana WWLN

Rozkład natężenia pola magnetycznego

Rozkład natężenia pola elektrycznego

Porównanie rozkładów PEM pochodzących od WWLN z rozkładami linii klasycznych

WNIOSEK Zastosowanie WWLN **nie wpływa** na pogorszenie się warunków oddziaływania PEM pochodzącego od linii napowietrznych na środowisko naturalne, ponadto możliwe jest uzyskanie mniejszych wartości natężenia PEM!

Plan działania

ZAKRES

Stworzenie **uniwersalnego** modelu matematycznego WWLN w postaci **macierzy admitancyjnych** parametrów wzdłużnych i porzecznych dla wielkości fazowych oraz składowych symetrycznych.

CEL

Model pozwalający na odwzorowanie WWLN w stanach pracy normalnej stosowany do obliczeń rozpływowych (stany ustalone) oraz stanach zakłóceniowych do wyznaczenia początkowych prądów zwarcia (stany quasi-ustalone).

REALIZACJA

Wprowadzenie do zagadnień teorii obwodów ziemnopowrotnych oraz metody odbić zwierciadlanych pozwalających na zdefiniowane **parametrów modelu**. Uwzględnienie w modelu elementów i zjawisk obejmujących: oddziaływanie przewodów odgromowych, występowanie przewodów wiązkowych oraz zróżnicowanie poziomów napięć znamionowych torów prądowych WWLN.

Przedstawienie algorytmu **uproszczenia** modelu matematycznego WWLN, czego efektem jest model symetryczny WWLN.

Parametry modelu matematycznego WWLN

IMPEDANCJE OBWODÓW ZIEMNOPOWROTNYCH

$$\underline{Z}_{kk} \approx l \cdot \left(R_k' + 0,049 + j0,0628 \ln \frac{\delta}{r_{0k}} \right)$$

I M P E D A N C J A W Z A J E M N A

$$\underline{Z}_{kp} \approx l \cdot \left(0,049 + j0,0628 \ln \frac{\delta}{d_{kp}} \right)$$

MACIERZ ADMITANCYJNA

$$\mathbf{Y} = \mathbf{Z}^{-1} = \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} & \cdots & \underline{Z}_{1N} \\ \underline{Z}_{21} & \underline{Z}_{22} & \cdots & \underline{Z}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{Z}_{N1} & \underline{Z}_{N2} & \cdots & \underline{Z}_{NN} \end{bmatrix}^{-1}$$

N – liczba przewodów linii napowietrznej, $k, p \in N$; l – długość linii napowietrznej r_{0k} = 0,816 r_k dla linek stalowo-aluminiowych, r_{0k} = 0,78 r_k dla przewodów jednodrutowych

Katedra Elektroenergetyki i Sterowania Układów

 $C = P^{-1} =$

ke

 $\cdots P_{NN}$

PARAMETRY POPRZECZNE

POTENCJAŁOWE WSPÓŁCZYNNIKI MAXWELLA

PWM WEASNY
$$P_{kk} = \frac{1}{2\pi\varepsilon_0 l} \ln \frac{2h_k}{r_k}$$

PWMWZAJEMNY

$$P_{kp} = \frac{1}{2\pi\varepsilon_0 l} \ln \frac{d_{kp'}}{d_{kp}}$$

MACIERZ POJEMNOŚCI

 P_{N1} P_{N2}

 $\begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1N} \\ P_{21} & P_{22} & \cdots & P_{2N} \end{bmatrix}$

Elementy uwzględniane w modelu matematycznym

ODDZIAŁYWANIE P R Z E W O D Ó W O D G R O M O W Y C H

WYSTĘPOWANIE P R Z E W O D Ó W WIĄZKOWYCH

ZRÓŻNICOWANIE POZIOMÓW NAPIĘĆ ZNAMIONOWYCH

STRUKTURA MODELU **PO** REDUKCJI

Katedra Elektroenergetyki i Sterowania Układów

30

Postacie modelu admitancyjnego

MODEL WWLN DLA WIELKOŚCI FAZOWYCH

$$\underline{Y}_{L_{i,j}} = \underline{Y}_{L_{i,j}}^{e,pu} + j \frac{1}{2} \omega C_{L_{i,j}}^{e,pu}$$

$$\underline{Y}_{L_{i,j'}} = \underline{Y}_{L_{i,j'}}^{e,pu}$$

 L_i – przewód fazowy toru prądowego *i*, $L_i = \{L1, L2, L3\}$

dotyczy par

MODEL WWLN DLA SKŁADOWYCH SYMETRYCZNYCH

* przedstawiana postać prawdziwa dla symetrycznej WWLN

$$\underline{Y}_{S_{i,j}} = \underline{Y}_{S_{i,j}}^{e,pu} + j \frac{1}{2} \omega C_{S_{i,j}}^{e,pu}$$
$$V = V^{e,pu}$$

$$-S_{i.j'} - S_{i.j'}$$

 S_i – składowa symetryczna dla toru prądowego $i, S = \{0, 1, 2\}$

dotyczy pary torów i, j

$\underline{Y}_{L1_{I}}$	$\underline{Y}_{L1_{I}-L2_{I}}$	$\underline{Y}_{L1_{I}-L3_{I}}$	$-\underline{Y}_{L1_{I}-L1_{I}}$	$-\underline{Y}_{L1_{I}-L2_{I}}$	$-\underline{Y}_{L1_{I}-L3_{I}}$		$\underline{Y}_{L1_{I}-L}$	$\underline{Y}_{L1_n} = \underline{Y}_{L1_1 - L2_n}$	$\underline{Y}_{L1_{I}-L3_{n}}$	$-\underline{Y}_{L1_{I}-L1_{n}}$	$-\underline{Y}_{L1_{I}-L2_{n}}$	$-\underline{Y}_{1}$
L2 _I -L1 _I	$\underline{Y}_{L2_{I}}$	$\underline{Y}_{L2-L3_{I}}$	$-\underline{Y}_{L2_{I}-L1_{I}}$	$-\underline{Y}_{L2-L2_{\Gamma}}$	$-\underline{Y}_{L2_{I}}$ -L3 _r		$\underline{Y}_{L2_{I}}$ -L	$\underline{Y}_{L2_{I}} - \underline{Y}_{L2_{I}}$	$\underline{Y}_{L2_{I}}-L3_{n}$	$-\underline{Y}_{L2_{I}}-L1_{n}$	$-\underline{Y}_{L2_{I}}-L2_{n}$	$-\underline{Y}_{1}$
L3 _I -L1 _I	$\underline{Y}_{L3_{I}-L2_{I}}$	$\underline{Y}_{L3_{I}}$	$-\underline{Y}_{L3_{I}-L1_{I}}$	$-\underline{Y}_{L3_{I}}-L2_{\Gamma}$	$-\underline{Y}_{L3-L3_{\Gamma}}$		$\underline{Y}_{L3_{I}}$ -L	$\underline{Y}_{L3_{I}} - \underline{Y}_{L3_{I}} - L2_{n}$	$\underline{Y}_{L3_{I}}-L3_{n}$	$-\underline{Y}_{L_{3_{I}}-L_{1_{n}}}$	$-\underline{Y}_{L3_{I}}-L2_{n}$	$-\underline{Y}_{1}$
l _I -Ll _{I'}	$-\underline{Y}_{L1_{I}-L2_{I}}$	$-\underline{Y}_{L1_{I}-L3_{I'}}$	$\underline{Y}_{L1_{\Gamma}}$	$\underline{Y}_{L1_{\Gamma}}$ -L2 _{Γ}	$\underline{Y}_{L1_{\Gamma}}$ -L3 _{Γ}		$-\underline{Y}_{L1_{I}-L1}$	$-\underline{Y}_{L1_{I}-L2}$	$-\underline{Y}_{L1_{I}-L3_{n}}$	$\underline{Y}_{L1_{I}-L1_{n}}$	$\underline{Y}_{L1_{I}-L2_{n}}$	$\underline{Y}_{L1_{I}}$
2 _I -L1 _{I'}	$-\underline{Y}_{L2-L2_{\Gamma}}$	$-\underline{Y}_{L2_{I}}-L3_{\Gamma}$	$\underline{Y}_{L2_{\Gamma}}$ -L1 _{Γ}	$\underline{Y}_{L2_{\Gamma}}$	$\underline{Y}_{L2_{\Gamma}}$ -L3 _{Γ}		$-\underline{Y}_{L2_{I}-L1}$	$-\underline{Y}_{L2_{I}-L2}$	$-\underline{Y}_{L2_{I}}-L3_{n}$	$\underline{Y}_{L2_{I}}-L1_{n}$	$\underline{Y}_{L2_{I}-L2_{n}}$	$\underline{Y}_{L2_{I}}$
3 _I -L1 _{I'}	$-\underline{Y}_{L3_{I}}-L2_{I}$	$-\underline{Y}_{L3-L3_{\Gamma}}$	$\underline{Y}_{L3_{\Gamma}}L_{1_{\Gamma}}$	$\underline{Y}_{L3_{\Gamma}}-L2_{\Gamma}$	$\underline{Y}_{L3_{\Gamma}}$		$-\underline{Y}_{L3_{I}}$ -L1	$-\underline{Y}_{L3_{I}-L2}$	$-\underline{Y}_{L3_{I}-L3_{n}}$	$\underline{Y}_{L3_{I}}-L1_{n}$	$\underline{Y}_{L_{3_{I}}-L_{2_{n}}}$	$\underline{Y}_{L3_{I}}$
			:			•••				:		
$L1_n - L1_I$	\underline{Y}_{L1_n} -L2 _I	$\underline{Y}_{L1_n-L3_I}$	$-\underline{Y}_{L1_n-L1_I}$	$-\underline{Y}_{L1_n}-L2_I$	$-\underline{Y}_{L1_n-L3_1}$		\underline{Y}_{L1_n}	\underline{Y}_{L1_n} -L2 _n	$\underline{Y}_{L1_n-L3_n}$	$-\underline{Y}_{L1-L1_{n'}}$	$-\underline{Y}_{L1_n, -L2_n}$, <u> </u>
2_n -L1 _I	$\underline{Y}_{L2_n-L2_1}$	$\underline{Y}_{L2_n-L3_I}$	$-\underline{Y}_{L2_n-L1_I}$	$-\underline{Y}_{L2_n-L2_I}$	$-\underline{Y}_{L2_n-L3_I}$		$\underline{Y}_{L2_n-L1_n}$	\underline{Y}_{L2_n}	$\underline{Y}_{L2_n-L3_n}$	$-\underline{Y}_{L2_{n'}}-L1_{n'}$	$-\underline{Y}_{L2-L2_{n'}}$	
$L3_n$ -L1 _I	\underline{Y}_{L3_n} -L2 _I	$\underline{Y}_{L3_n-L3_I}$	$-\underline{Y}_{L3_n-L1_I}$	$-\underline{Y}_{L3_n-L2_I}$	$-\underline{Y}_{L3_n-L3_1}$		$\underline{Y}_{L3_n-L1_n}$	$\underline{Y}_{L3_n}-L2_n$	\underline{Y}_{L3_n}	$-\underline{Y}_{L3_{n'}}-L1_{n'}$	$-\underline{Y}_{L3_n}$ -L2 _n	, —
$I_n - L I_I$	$-\underline{Y}_{L1_n}-L2_I$	$-\underline{Y}_{L1_n-L3_1}$	\underline{Y}_{L1_n} -L1 _I	$\underline{Y}_{L1_n-L2_I}$	$\underline{Y}_{L1_n-L3_I}$		$-\underline{Y}_{L1-L1_{n'}}$	$-\underline{Y}_{L1_{n'}}-L2_{n'}$	$-\underline{Y}_{L1_{n'}}-L3_{n'}$	$\underline{Y}_{L1_{n'}}$	$\underline{Y}_{L1_{n'}-L2_{n'}}$	\underline{Y}_{L}
2_n -L1 _I	$-\underline{Y}_{L2_n-L2_I}$	$-\underline{Y}_{L2_n-L3_I}$	$\underline{Y}_{L2_n-L1_I}$	$\underline{Y}_{L2_n-L2_I}$	$\underline{Y}_{L2_n-L3_I}$		$-\underline{Y}_{\mathrm{L2}_{n'}-\mathrm{L1}_{n'}}$	$-\underline{Y}_{L2-L2_{n'}}$	$-\underline{Y}_{\mathrm{L2}_{n'}-\mathrm{L3}_{n'}}$	$\underline{Y}_{L2_{n'}-L1_{n'}}$	$\underline{Y}_{L2_{n'}}$	\underline{Y}_{L}
B_n -L1 _I	$-\underline{Y}_{L3_n-L2_1}$	$-\underline{Y}_{L3_n-L3_n}$	$\underline{Y}_{L3_n-L1_I}$	$\underline{Y}_{L3_n-L2_I}$	$\underline{Y}_{L3_n-L3_I}$		$-\underline{Y}_{\mathrm{L3}_{n'}-\mathrm{L1}_{n'}}$	$-\underline{Y}_{L3_{n'}}-L2_{n'}$	$-\underline{Y}_{L3-L3_{n'}}$	$\sum_{n'} \underline{Y}_{L3_{n'}} - L1_{n'}$	$\underline{Y}_{\mathrm{L3}_{n'}-\mathrm{L2}_{n'}}$	<u>}</u>
y tor	rów i, j										dotyczy t	oru

Schematy zastępcze WWLN

* przedstawiana postać prawdziwa dla symetrycznej WWLN

Model admitancyjny dla parametrów wzdłużnych zgodny (przeciwny) zerowy

$$\mathbf{Y}_{\mathbf{1}}^{\text{e,pu}} = \mathbf{Y}_{\mathbf{2}}^{\text{e,pu}} = \begin{bmatrix} \underline{Y}_{1_{\text{I}}} & -\underline{Y}_{1_{\text{I}}} \\ -\underline{Y}_{1_{\text{I}}} & \underline{Y}_{1_{\text{I}}} \\ & & \underline{Y}_{1_{\text{I}}} & -\underline{Y}_{1_{\text{I}}} \\ & & & -\underline{Y}_{1_{\text{I}}} & \underline{Y}_{1_{\text{I}}} \end{bmatrix} \qquad \mathbf{Y}_{\mathbf{0}}^{\text{e,pu}} = \begin{bmatrix} \underline{Y}_{0_{\text{I}}} & -\underline{Y}_{0_{\text{I}}} & \underline{Y}_{0_{\text{I,I}}} & -\underline{Y}_{0_{\text{I,II}}} \\ -\underline{Y}_{0_{\text{I}}} & \underline{Y}_{0_{\text{I}}} & -\underline{Y}_{0_{\text{I,II}}} & \underline{Y}_{0_{\text{I,II}}} \\ & & & -\underline{Y}_{1_{\text{II}}} & \underline{Y}_{1_{\text{II}}} \end{bmatrix} \qquad \mathbf{Y}_{\mathbf{0}}^{\text{e,pu}} = \begin{bmatrix} \underline{Y}_{0_{\text{I}}} & -\underline{Y}_{0_{\text{I}}} & \underline{Y}_{0_{\text{I,II}}} & -\underline{Y}_{0_{\text{I,II}}} \\ -\underline{Y}_{0_{\text{I,I}}} & -\underline{Y}_{0_{\text{I,II}}} & \underline{Y}_{0_{\text{I,II}}} & -\underline{Y}_{0_{\text{I,II}}} \\ & & & -\underline{Y}_{0_{\text{II}}} & \underline{Y}_{1_{\text{II}}} \end{bmatrix} \end{bmatrix}$$

Schemat zastępczy dla parametrów wzdłużnych

zgodny (przeciwny)

zerowy

 $-\underline{Y}_{0\,\mathrm{I.I.}}^{\mathrm{pu}}$

П,

n = 2

Model admitancyjny dla parametrów poprzecznych

zgodny (przeciwny)

zerowy

$$\mathbf{C}_{1}^{\text{e,pu}} = \mathbf{C}_{2}^{\text{e,pu}} = \begin{bmatrix} C_{1_{\text{I}}} & \\ & C_{1_{\text{II}}} \end{bmatrix} \qquad \mathbf{C}_{0}^{\text{e,pu}} = \begin{bmatrix} C_{0_{\text{I}}} & C_{0_{\text{I,II}}} \\ & C_{0_{\text{I,II}}} & & C_{0_{\text{I,III}}} \end{bmatrix}$$

Schemat zastępczy dla parametrów poprzecznychzgodny (przeciwny)zerowy

Schematy zastępcze WWLN

* przedstawiana postać prawdziwa dla symetrycznej WWLN

Model admitancyjny dla parametrów wzdłużnych zgodny (przeciwny) zerowy

$$\mathbf{Y}_{1}^{e,pu} = \mathbf{Y}_{2}^{e,pu} = \begin{bmatrix} \underline{Y}_{1_{1}} & -\underline{Y}_{1_{1}} & & & \\ -\underline{Y}_{1_{1}} & \underline{Y}_{1_{1}} & & & \\ & & \underline{Y}_{1_{n}} & -\underline{Y}_{1_{n}} & \\ & & & \underline{Y}_{1_{n}} & -\underline{Y}_{1_{n}} \\ & & & -\underline{Y}_{1_{n}} & \underline{Y}_{1_{n}} \\ & & & & -\underline{Y}_{1_{n}} & \underline{Y}_{1_{n}} \end{bmatrix}} \quad \mathbf{Y}_{0}^{e,pu} = \begin{bmatrix} \underline{Y}_{0_{1}} & -\underline{Y}_{0_{1}} & \underline{Y}_{0_{1,n}} & -\underline{Y}_{0_{1,n}} & \underline{Y}_{0_{1,n}} & -\underline{Y}_{0_{1,n}} \\ -\underline{Y}_{0_{1,1}} & -\underline{Y}_{0_{1,1}} & \underline{Y}_{0_{1,1}} & -\underline{Y}_{0_{n}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n}} & \underline{Y}_{0_{n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n}} & \underline{Y}_{0_{n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,n}} & -\underline{Y}_{0_{n,n}} & \underline{Y}_{0_{n,n}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} \\ -\underline{Y}_{0_{n,1}} & \underline{Y}_{0_{n,1}} & -\underline{Y}_{0_{n,1}} & \underline{Y}$$

Schemat zastępczy dla parametrów wzdłużnych

zgodny (przeciwny)

zerowy

n = 3

Model admitancyjny dla parametrów poprzecznych

zgodny (przeciwny)

zerowy

Schemat zastępczy dla parametrów poprzecznych zgodny (przeciwny)

zerowy

Schematy zastępcze WWLN

* przedstawiana postać prawdziwa dla symetrycznej WWLN

Model admitancyjny dla parametrów wzdłużnych zgodny (przeciwny)

$\begin{array}{c|c} \ddots & & \\ & \underline{Y}_{1_n} & -\underline{Y}_{1_n} \\ & -\underline{Y}_{1_n} & \underline{Y}_{1_n} \end{array} \end{array} \begin{array}{c} \mathbf{Y}_{\mathbf{0}}^{\mathrm{e,pu}} = \\ & \underline{Y}_{0}. \end{array}$ $\mathbf{Y}_1^{\mathrm{e},\mathrm{pu}} = \mathbf{Y}_2^{\mathrm{e},\mathrm{pu}} =$ $\frac{\underline{Y}_{0_{n.I}}}{-\underline{Y}_{0_n}}$ \underline{Y}_{0_n}

Schemat zastępczy dla parametrów wzdłużnych

zgodny (przeciwny)

zerowy

zerowy

n

Model admitancyjny dla parametrów poprzecznych

zgodny (przeciwny)

zerowy

Schemat zastępczy dla parametrów poprzecznych zgodny (przeciwny) zerowy

Ochrona

Czy można zastosować model symetryczny do opisu linii niesymetryczņej?

Ocena wpływu zastosowania uroszczonego (symetrycznego) modelu matematycznego do opisu WWLN przy wyznaczaniu prądów zwarcia

SYMETRYCZNA

Ten sam prąd zwarcia jednofazowego bez względu na zwartą fazę

Prądy płynące w poszczególnych fazach przy zwarciu trójfazowym są takie same

NIESYMETRYCZNA

Różne prądy zwarcia w zależności od zwartej fazy

Prądy płynące w poszczególnych fazach przy zwarciu trójfazowym NIE są takie same

Ochrona | Scenariusze analiz

SCENARIUSZE ANALIZ

Wyznaczanie procentowych błędów względnych prądów zwarcia $\delta l_{zw\%}$ oraz procentowych błędów względnych prądów gałęziowych (udziałów prądów zwarcia) od strony badanego toru prądowego $\delta l_{gal\%}$ przy zwarciu jednofazowym i trójfazowym na końcu tego toru:

- w funkcji długości WWLN, przy ustalonym układzie przewodów fazowych,
- w funkcji **układu przewodów fazowych** w torach prądowych WWLN, przy ustalonej długości linii wynoszącej 75 km.

±5% poziomu błędu względnego przy Dopuszcza się wyznaczaniu prądów w wyniku zastosowania modelu uproszczonego (symetrycznego) podczas modelowania zwarć.

PROCENTOWY BŁĄD
WZGLĘDNY PRĄDU
ZWARCIA
$$\delta I_{zw\%} = \frac{\left| \underline{I}_{zw \, pu}^{sym} \right| - \left| \underline{I}_{zw \, pu}^{niesym} \right|}{\left| \underline{I}_{zw \, pu}^{niesym} \right|} \cdot 100\%$$
PROCENTOWY BŁĄD
WZGLĘDNY UDZIAŁU
PRĄDU ZWARCIOWEGO $\delta I_{gał\%} = \frac{\left| \underline{I}_{gał \, pu}^{sym} \right| - \left| \underline{I}_{gal \, pu}^{niesym} \right|}{\left| \underline{I}_{gal \, pu}^{niesym} \right|} \cdot 100\%$

MODEL ADMITANCYJNY LINII ZWARCIE JEDNOFAZOWE/TRÓJFAZOWE NA KOŃCU TORU PRĄDOWEGO III

Model sieci zewnętrznej z WWLN do analizy zwarciowej

Ochrona Obserwacje

Procentowe błędy względne prądów zwarcia $\delta I_{zw\%}$ i prądów udziału $\delta I_{gał\%}$ w funkcji długości WWLN przy zwarciu trójfazowym i jednofazowym w torze III

Maksymalne długości badanych WWLN w km, przy których nie przekracza się dopuszczalnego poziomu błędu przy modelowaniu zwarć

Układy przewodów fazowych WWLN, dla których osiąga się najmniejsze błędy przy modelowaniu zwarć (*l*_{WWLN} = 75 km)

Bezpieczeństwo

Wyznaczenie napięcia U_0 w odłączonym torze prądowym WWLN

Pojemności cząstkowe w linii dwutorowej

$U_0 = \frac{1}{3} \left| \underbrace{U_{\text{L1II}}}_{\text{L1II}} + \underbrace{U_{\text{L2II}}}_{\text{L2II}} + \underbrace{U_{\text{L3II}}}_{\text{L3II}} \right|$

Napięcie U₀ w odłączonym torze prądowym

Jakość napięcia

Jaki wpływ ma niesymetria geometryczna WWLN na jakość napięcia?

SCENARIUSZE ANALIZ

- dopuszczalnymi długotrwale,
- oraz przy obciążeniu wszystkich torów prądowych połową prądów dopuszczalnych długotrwale.

Przepisy krajowe podają wyłącznie graniczne wartości dla wskaźnika niesymetrii α_2 , który nie powinien przekraczać 1%. Przyjęto tą samą graniczną wartość dla wskaźnika niezrównoważenia α_0 . Wskaźniki α_0 i α_2 traktuje się równoważnie.

$$\underset{\text{Niezrównoważenia}}{\text{wskaźnik}} \qquad \alpha_0 = \frac{\left|\underline{U}_0\right|}{\left|\underline{U}_1\right|} \cdot 100\%$$

WSKAŻNIK **NIESYMETRII**

$$\chi_2 = \frac{\left|\underline{U}_2\right|}{\left|\underline{U}_1\right|} \cdot 100\%$$

wyznaczenie wskaźników α_0 i α_2 w funkcji długości WWLN w zakresie od 1 km do 150 km przy obciążeniu torów prądowych prądami

wyznaczenie wskaźników α_0 i α_2 w funkcji zastosowanego układu przewodów fazowych WWLN dla długości linii wynoszącej 75 km

Model sieci zewnętrznej z WWLN do analiz niesymetrii impedancyjnej

Jakość napięcia | Obserwacje

WWLN

Jakość napięcia | Obserwacje

Układy przewodów fazowych WWLN, dla których osiągane wskaźniki asymetrii są najmniejsze (*l*_{WWLN} = 75 km)

Obserwacje z przeprowadzonych analiz

Obserwacje z przeprowadzonych analiz

- które charakteryzują się małym stopniem niesymetrii geometrycznej.
- znamionowego spośród torów WWLN.

W procesie projektowania nowego połączenia liniowego zawierającego WWLN powinno się wybierać konstrukcje,

> Szczególną uwagę należy zwrócić na warunki pracy toru prądowego o najniższym poziomie napięcia

WWLN w rzeczywistym, niesymetrycznym otoczeniu sieciowym

Plan rozwoju systemu przesyłowego na lata 2027-2030 przewiduje budowę trójtorowej, dwunapięciowej linii napowietrznej 400+2×220 kV (docelowo 2×400+220 kV) w obszarze PSE-Południe o długości około 60-75 km relacji Byczyna-Podborze (BYC-PBO).

Dodatkowo w ciągu liniowym planuje się realizację dwóch odejść do stacji odbiorczych 220 kV Poręba (PRB) oraz Bieruń (BIR) – docelowo 400 kV.

47

Badane otoczenie sieciowe trójtorowej, dwunapięciowej linii napowietrznej

Likwidacja przekroczenia wartości wskaźnika niesymetrii w węźle PBO-3 (220 kV)

przewodów fazowych toru linii

Porównanie wskaźników niesymetrii i niezrównoważenia po wykonaniu przeplotów zrealizowany we fragmencie dłuższego odcinka WWLN

	Układ pod	dstawowy	Przeplot po ¹ / ₂ długoś WV	Prze i ² /	
	L1 L2 L3	L1 L2 L3	L1 L2 L3	L3 L2 L1	L1 L2 L3
	α ₀ , %	α2, %	α ₀ , %	α2, %	0
PBO-1 (400 kV)	0,37	0,96	0,37	1,00	C
PBO-2 (400 kV)	0,68	0,90	0,68	0,67	C
PBO-3 (220 kV)	0,82	1,11	0,82	0,87	C
BIR (400 kV)	0,14	0,30	0,13	0,28	C
PRB (220 kV)	0,20	0,24	0,21	0,67	C

Podsumowanie

WWLN są rozwiązaniem bardzo korzystnym.

Działania prowadzące do minimalizacji skutków niesymetrii geometrycznej WWLN można podzielić na dwa etapy:

- wybór sylwetki charakteryzującej się małym stopniem niesymetrii geometrycznej,
- (jeśli konieczna) symetryzacja WWLN.

częściowa

Katedra Elektroenergetyki

i Sterowania Układów

Dziękujemy za uwagę

Sekcja IEEE DEIS Chapter Poland 15 lutego 2023 r.

Dr hab. inż. **Henryk Kocot**, prof. PŚ Profesor uczelni

Dr inż. **Agnieszka Dziendziel** Asystent

E-mail Henryk.Kocot@polsl.pl Agnieszka.Dziendziel@polsl.pl

Numer ORCID 0000 - 0003 - 4271 - 3036 0000 - 0002 - 0609 - 4736

